Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Funct Biomater ; 14(6)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37367270

RESUMO

BACKGROUND: Tissue engineering and cell therapy have been the focus of investigations on how to treat challenging bone defects. This study aimed to produce and characterize a P(VDF-TrFE)/BaTiO3 scaffold and evaluate the effect of mesenchymal stem cells (MSCs) combined with this scaffold and photobiomodulation (PBM) on bone repair. METHODS AND RESULTS: P(VDF-TrFE)/BaTiO3 was synthesized using an electrospinning technique and presented physical and chemical properties suitable for bone tissue engineering. This scaffold was implanted in rat calvarial defects (unilateral, 5 mm in diameter) and, 2 weeks post-implantation, MSCs were locally injected into these defects (n = 12/group). Photobiomodulation was then applied immediately, and again 48 and 96 h post-injection. The µCT and histological analyses showed an increment in bone formation, which exhibited a positive correlation with the treatments combined with the scaffold, with MSCs and PBM inducing more bone repair, followed by the scaffold combined with PBM, the scaffold combined with MSCs, and finally the scaffold alone (ANOVA, p ≤ 0.05). CONCLUSIONS: The P(VDF-TrFE)/BaTiO3 scaffold acted synergistically with MSCs and PBM to induce bone repair in rat calvarial defects. These findings emphasize the need to combine a range of techniques to regenerate large bone defects and provide avenues for further investigations on innovative tissue engineering approaches.

2.
Clin Oral Investig ; 26(1): 1053-1065, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34370100

RESUMO

OBJECTIVES: The purpose of this investigation was to evaluate in vivo the response of bone tissue to photobiomodulation when associated with texturized P(VDF-TrFE)/BT in calvaria defects of ovariectomized rats. MATERIALS AND METHODS: Wistar Hannover rats were submitted to ovariectomy/control surgery. Calvaria bone defects of 5-mm diameter were performed after 90 days of ovariectomy. The animals were divided into OVX (without laser (L) and membrane), OVX + P(VDF-TrFE)/BT, OVX + P(VDF-TrFE)/BT + L, and OVX + PTFE + L. It was utilized a low-intensity gallium-aluminum-arsenide laser (GaAlAs) with 780-nm wavelength and 30-J/cm2 energy density in 12 sessions (120 s). Thirty days after the bone defect the animals were euthanized for histological, microtomographic, and molecular evaluation. Quantitative analysis was analyzed by statistical software for p < 0.05. RESULTS: Histological parameters showed bone tissue formation at the borders of all group defects. The association of photobiomodulation and texturized P(VDF-TrFE)/BT was not synergistic and did not show significant changes in morphometric analysis and biomarkers gene expression. Nevertheless, texturized P(VDF-TrFE)/BT membrane enhanced bone repair regardless of the association with photobiomodulation therapy, with an increase of connectivity density when compared to the OVX + PTFE + L group. The association of photobiomodulation therapy and PTFE was synergistic, increasing the expression of Runx2, Alp, Bsp, Bglap, Sp7, and Rankl, even though not enough to reflect significance in the morphometric parameters. CONCLUSIONS: The utilization of texturized P (VDF-TrFE)/BT, regardless of the association with photobiomodulation therapy, enhanced bone repair in an experimental model of osteoporosis.


Assuntos
Terapia com Luz de Baixa Intensidade , Animais , Feminino , Osteogênese , Ratos , Ratos Wistar , Crânio/cirurgia , Titânio
3.
Work ; 65(2): 377-390, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31985480

RESUMO

BACKGROUND: The aim of this study was to characterize solid particulate aerosol derived from a cutlery microenterprise and to investigate substances associated with activities performed within the work environment. OBJECTIVE: Suspended particulate matter (SPM) was collected at different locations in the cutlery workshop and near machines used by workers, using passive sampling devices fitted with polytetrafluoroethylene filters, onto which total particulate material was deposited. The substances present in the SPM were analyzed using gas chromatography-mass spectrometry (GC-MS). RESULTS: Identification of the substances was performed using the National Institute of Standards (NIST) library and automated mass spectral deconvolution and identification system. (AMDIS) software, considering at least 70% probability. The concentration of total dust, obtained using a gravimetric method, was approximately 1 mg.m-3. CONCLUSION: The toxic substances found in the SPM included halogenated hydrocarbons (containing chlorine, fluorine, and iodine) and aromatic hydrocarbons. The toxic substances included naphthalene, which is classified as carcinogenic.


Assuntos
Hidrocarbonetos Aromáticos/análise , Hidrocarbonetos Halogenados/análise , Material Particulado/análise , Poluentes Ocupacionais do Ar/análise , Brasil , Cromatografia Gasosa-Espectrometria de Massas , Utensílios Domésticos , Naftalenos/análise , Empresa de Pequeno Porte
4.
Braz Oral Res ; 33: e079, 2019 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-31531565

RESUMO

Cell therapy associated with guided bone regeneration (GBR) can be used to treat bone defects under challenging conditions such as osteoporosis. This study aimed to evaluate the effect of mesenchymal stem cells (MSCs) in combination with a poly(vinylidene-trifluoroethylene)/barium titanate (PVDF-TrFE/BT) membrane on bone repair in osteoporotic rats. Osteoporosis was induced in female rats by bilateral removal of the ovaries (OVX) or sham surgery (SHAM), and the osteoporotic condition was characterized after 5 months by microtomographic and morphometric analyses. Calvarial defects were created in osteoporotic rats that immediately received the PVDF-TrFE/BT membrane. After 2 weeks, bone marrow-derived MSCs from healthy rats, characterized by the expression of surface markers using flow cytometry, or phosphate-buffered saline (PBS) (Control) were injected into the defects and bone formation was evaluated 4 weeks post-injection by microtomographic, morphometric, and histological analyses. A reduction in the amount of bone tissue in the femurs of OVX compared with SHAM rats confirmed the osteoporotic condition of the experimental model. More bone formation was observed when the defects were injected with MSCs compared to that with PBS. The modification that we are proposing in this study for the classical GBR approach where cells are locally injected after a membrane implantation may be a promising therapeutic strategy to increase bone formation under osteoporotic condition.


Assuntos
Compostos de Bário/farmacologia , Regeneração Tecidual Guiada/métodos , Células-Tronco Mesenquimais/fisiologia , Osteogênese/efeitos dos fármacos , Osteoporose/terapia , Polivinil/farmacologia , Titânio/farmacologia , Animais , Compostos de Bário/química , Densidade Óssea , Regeneração Óssea/efeitos dos fármacos , Regeneração Óssea/fisiologia , Feminino , Citometria de Fluxo , Imageamento Tridimensional , Células-Tronco Mesenquimais/química , Osteogênese/fisiologia , Osteoporose/fisiopatologia , Ovariectomia , Polivinil/química , Distribuição Aleatória , Ratos Wistar , Reprodutibilidade dos Testes , Fatores de Tempo , Titânio/química , Resultado do Tratamento
5.
Environ Technol ; 40(10): 1298-1305, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29285990

RESUMO

Polychlorinated biphenyls (PCBs) are carcinogenic to humans and can be found in fuller's earth used for the treatment of used transformer oil. This work describes an optimization of the Fenton process for the removal of contaminants from fuller's earth. The effects of pH (2.5 and 4.0), [H2O2] (1.47 and 2.07 mol L-1), and [Fe2+] (1.7 and 40 mmol L-1) were studied. The Fenton process efficiency was monitored using the decreases in the chemical oxygen demand (COD) and the concentrations of oil and grease, total carbon (TC), PCBs, and H2O2. The fuller's earth contaminated with insulating oil presented 35% (w/w) of TC, 34% (w/w) of oil and grease, 297.0 g L-1 COD, and 64 mg of PCBs per kg. The material could therefore be considered a dangerous waste. After Fenton treatment, using a slurry mode, there was a removal of 55% of COD, 20% of oil and grease, and 20% of TC, achieved at pH 2.5 using 2.07 mol L-1 of H2O2 and 40.0 mmol L-1 of Fe2+. No PCBs were detected in the samples after the Fenton treatment, even using smaller amounts of Fenton reagents (1.47 mol L-1 of H2O2, 1.7 mmol L-1 of Fe2+, pH 2.5). The results indicated that the treated fuller's earth was free from PCB residues and could be disposed of in a simple landfill, in accordance with Brazilian PCB regulations.


Assuntos
Bifenilos Policlorados , Compostos de Alumínio , Brasil , Humanos , Peróxido de Hidrogênio , Compostos de Magnésio , Oxirredução , Silicatos
6.
Braz. oral res. (Online) ; 33: e079, 2019. graf
Artigo em Inglês | LILACS | ID: biblio-1019604

RESUMO

Abstract Cell therapy associated with guided bone regeneration (GBR) can be used to treat bone defects under challenging conditions such as osteoporosis. This study aimed to evaluate the effect of mesenchymal stem cells (MSCs) in combination with a poly(vinylidene-trifluoroethylene)/barium titanate (PVDF-TrFE/BT) membrane on bone repair in osteoporotic rats. Osteoporosis was induced in female rats by bilateral removal of the ovaries (OVX) or sham surgery (SHAM), and the osteoporotic condition was characterized after 5 months by microtomographic and morphometric analyses. Calvarial defects were created in osteoporotic rats that immediately received the PVDF-TrFE/BT membrane. After 2 weeks, bone marrow-derived MSCs from healthy rats, characterized by the expression of surface markers using flow cytometry, or phosphate-buffered saline (PBS) (Control) were injected into the defects and bone formation was evaluated 4 weeks post-injection by microtomographic, morphometric, and histological analyses. A reduction in the amount of bone tissue in the femurs of OVX compared with SHAM rats confirmed the osteoporotic condition of the experimental model. More bone formation was observed when the defects were injected with MSCs compared to that with PBS. The modification that we are proposing in this study for the classical GBR approach where cells are locally injected after a membrane implantation may be a promising therapeutic strategy to increase bone formation under osteoporotic condition.


Assuntos
Animais , Feminino , Polivinil/farmacologia , Titânio/farmacologia , Compostos de Bário/farmacologia , Regeneração Tecidual Guiada/métodos , Células-Tronco Mesenquimais/fisiologia , Osteogênese/efeitos dos fármacos , Osteoporose/fisiopatologia , Osteoporose/terapia , Polivinil/química , Fatores de Tempo , Titânio/química , Regeneração Óssea/efeitos dos fármacos , Regeneração Óssea/fisiologia , Ovariectomia , Distribuição Aleatória , Densidade Óssea , Reprodutibilidade dos Testes , Resultado do Tratamento , Ratos Wistar , Compostos de Bário/química , Imageamento Tridimensional , Células-Tronco Mesenquimais/química , Citometria de Fluxo
7.
Calcif Tissue Int ; 101(3): 312-320, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28451713

RESUMO

One of the tissue engineering strategies to promote bone regeneration is the association of cells and biomaterials. In this context, the aim of this study was to evaluate if cell source, either from bone marrow or adipose tissue, affects bone repair induced by osteoblastic cells associated with a membrane of poly(vinylidene-trifluoroethylene)/barium titanate (PVDF-TrFE/BT). Mesenchymal stem cells (MSC) were isolated from rat bone marrow and adipose tissue and characterized by detection of several surface markers. Also, both cell populations were cultured under osteogenic conditions and it was observed that MSC from bone marrow were more osteogenic than MSC from adipose tissue. The bone repair was evaluated in rat calvarial defects implanted with PVDF-TrFE/BT membrane and locally injected with (1) osteoblastic cells differentiated from MSC from bone marrow, (2) osteoblastic cells differentiated from MSC from adipose tissue or (3) phosphate-buffered saline. Luciferase-expressing osteoblastic cells derived from bone marrow and adipose tissue were detected in bone defects after cell injection during 25 days without difference in luciferin signal between cells from both sources. Corroborating the in vitro findings, osteoblastic cells from bone marrow combined with the PVDF-TrFE/BT membrane increased the bone formation, whereas osteoblastic cells from adipose tissue did not enhance the bone repair induced by the membrane itself. Based on these findings, it is possible to conclude that, by combining a membrane with cells in this rat model, cell source matters and that bone marrow could be a more suitable source of cells for therapies to engineer bone.


Assuntos
Transplante de Células-Tronco Mesenquimais/métodos , Osteoblastos/citologia , Crânio , Engenharia Tecidual/métodos , Tecido Adiposo/citologia , Animais , Compostos de Bário , Materiais Biocompatíveis , Células da Medula Óssea/citologia , Diferenciação Celular , Masculino , Células-Tronco Mesenquimais/citologia , Polivinil , Ratos , Ratos Wistar , Titânio
8.
J Mater Sci Mater Med ; 27(12): 180, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27770393

RESUMO

Osteoporosis is a chronic disease that impairs proper bone remodeling. Guided bone regeneration is a surgical technique that improves bone defect in a particular region through new bone formation, using barrier materials (e.g. membranes) to protect the space adjacent to the bone defect. The polytetrafluorethylene membrane is widely used in guided bone regeneration, however, new membranes are being investigated. The purpose of this study was to evaluate the effect of P(VDFTrFE)/BT [poly(vinylidene fluoride-trifluoroethylene)/barium titanate] membrane on in vivo bone formation. Twenty-three Wistar rats were submitted to bilateral ovariectomy. Five animals were subjected to sham surgery. After 150 days, bone defects were created and filled with P(VDF-TrFE)/BT membrane or PTFE membrane (except for the sham and OVX groups). After 4 weeks, the animals were euthanized and calvaria samples were subjected to histomorphometric and computed microtomography analysis (microCT), besides real time polymerase chain reaction (real time PCR) to evaluate gene expression. The histomorphometric analysis showed that the animals that received the P(VDF-TrFE)/BT membrane presented morphometric parameters similar or even better compared to the animals that received the PTFE membrane. The comparison between groups showed that gene expression of RUNX2, BSP, OPN, OSX and RANKL were lower on P(VDF-TrFE)/BT membrane; the gene expression of ALP, OC, RANK and CTSK were similar and the gene expression of OPG, CALCR and MMP9 were higher when compared to PTFE. The results showed that the P(VDF-TrFE)/BT membrane favors bone formation, and therefore, may be considered a promising biomaterial to support bone repair in a situation of osteoporosis.


Assuntos
Compostos de Bário/química , Hidrocarbonetos Fluorados/química , Osteogênese , Osteoporose/cirurgia , Titânio/química , Compostos de Vinila/química , Animais , Materiais Biocompatíveis/química , Regeneração Óssea , Transplante Ósseo , Osso e Ossos/metabolismo , Catepsina K/metabolismo , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Metaloproteinase 9 da Matriz/metabolismo , Membranas Artificiais , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Osteoporose/metabolismo , Ligante RANK/metabolismo , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real , Receptor Ativador de Fator Nuclear kappa-B/metabolismo , Receptores da Calcitonina/metabolismo , Microtomografia por Raio-X
9.
J Biomater Sci Polym Ed ; 27(13): 1369-79, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27312544

RESUMO

The poly(vinylidene-trifluoroethylene)/barium titanate (PVDF) membrane enhances in vitro osteoblast differentiation and in vivo bone repair. Here, we hypothesized that this higher bone repair could be also due to bone resorption inhibition mediated by a microRNA (miR)/RANKL circuit. To test our hypothesis, the large-scale miR expression of bone tissue grown on PVDF and polytetrafluoroethylene (PTFE) membranes was evaluated to identify potential RANKL-targeted miRs modulated by PVDF. The animal model used was rat calvarial defects implanted with either PVDF or PTFE. At 4 and 8 weeks, the bone tissue grown on membranes was submitted to a large-scale analysis of miRs by microarray. The expression of miR-34a and some of its targets, including RANKL, were evaluated by real-time polimerase chain reaction and osteoclast activity was detected by tartrate-resistant acid phosphatase (TRAP) staining. Among more than 250 miRs, twelve, including miR-34a, were simultaneously higher expressed (≥2 fold) at 4 and 8 weeks on PVDF. The higher expression of miR-34a was concomitant with a reduced expression of all its evaluated targets, including RANKL. Additionally, more TRAP-positive cells were observed in bone tissue grown on PTFE compared with PVDF in both time points. In conclusion, our results suggest that the higher bone formation induced by PVDF could be, at least in part, triggered by a miR-34a increase and RANKL decrease, which may inhibit osteoclast differentiation and activity, and bone resorption.


Assuntos
Compostos de Bário/química , Regeneração Óssea , Hidrocarbonetos Fluorados/química , MicroRNAs/metabolismo , Osteoblastos/citologia , Ligante RANK/metabolismo , Titânio/química , Compostos de Vinila/química , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Osso e Ossos/metabolismo , Diferenciação Celular , Expressão Gênica , Membranas Artificiais , Osteoblastos/metabolismo , Osteogênese , Ratos Wistar
10.
J Biomater Appl ; 29(1): 104-12, 2014 07.
Artigo em Inglês | MEDLINE | ID: mdl-24319054

RESUMO

In this study, we evaluated the effect of poly(vinylidene fluoride-trifluoroethylene)/barium titanate (P(VDF-TrFE)/BT) membrane on in vivo bone formation. Rat calvarial bone defects were implanted with P(VDF-TrFE)/BT and polytetrafluoroethylene (PTFE) membranes, and at 4 and 8 weeks, histomorphometric and gene expression analyses were performed. A higher amount of bone formation was noticed on P(VDF-TrFE)/BT compared with PTFE. The gene expression of RUNX2, bone sialoprotein, osteocalcin, receptor activator of nuclear factor-kappa B ligand, and osteoprotegerin indicates that P(VDF-TrFE)/BT favored the osteoblast differentiation compared with PTFE. These results evidenced the benefits of using P(VDF-TrFE)/BT to promote new bone formation, which may represent a promising alternative to be employed in guided bone regeneration.


Assuntos
Regeneração Óssea , Regeneração Tecidual Guiada/métodos , Animais , Compostos de Bário/química , Materiais Biocompatíveis/química , Substitutos Ósseos/química , Expressão Gênica , Hidrocarbonetos Fluorados/química , Imageamento Tridimensional , Teste de Materiais , Membranas Artificiais , Osteoblastos/citologia , Osteoblastos/metabolismo , Ratos , Ratos Wistar , Crânio/lesões , Crânio/metabolismo , Crânio/patologia , Titânio/química , Compostos de Vinila/química , Microtomografia por Raio-X
11.
Dent Mater ; 24(1): 124-8, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17524472

RESUMO

OBJECTIVES: The purpose of this paper is to modify the conventional calcium fluoro-alumino-silicate glass, which is used in the formation of glass ionomer cements (CIGs) by the niobium addition and to study the properties of GICs obtained. MATERIALS AND METHODS: Sol-gel process was used to prepare the powder at lower temperature than fusion method. Glass-ceramic powder obtained in this way was used to prepare the GICs. The properties such as working and setting times, microhardness and diametral tensile strength were evaluated for the experimental GICs and a commercial luting cement. RESULTS: The ideal powder:liquid (P:L) ratio determined to prepare the experimental GICs was equal to 1:1. The cements prepared using this ratio showed working and setting times similar to the commercial GICs. In mechanical tests it was observed that microhardness and diametral tensile strength of the experimental GICs decreased significantly with the reduction of P:L ratio. On the other hand, the results obtained in microhardness tests indicated that the presence of niobium was a positive factor. SIGNIFICANCE: The chemical process allows the development of glass-ceramic powder at 600 degrees C which is the goal of the present paper. It was concluded that GICs containing niobium might be used in dental applications and these results encourage further researches on other compositions.


Assuntos
Cimentos de Ionômeros de Vidro/química , Nióbio , Técnicas de Química Combinatória , Cristalografia por Raios X , Análise do Estresse Dentário , Fluoretos , Cimentos de Ionômeros de Vidro/síntese química , Dureza , Espectroscopia de Ressonância Magnética , Teste de Materiais , Nióbio/química , Pós/síntese química , Silicatos , Espectroscopia de Infravermelho com Transformada de Fourier , Resistência à Tração , Temperatura de Transição
12.
J Biomed Mater Res A ; 79(2): 282-8, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16817204

RESUMO

This study was aimed at investigating the in vitro biocompatibility of a novel membrane of the composite poly(vinylidene-trifluoroethylene)/barium titanate (P(VDF-TrFE)/BT). Osteoblastic cells were obtained from human alveolar bone fragments and cultured under standard osteogenic condition until subconfluence. First passaged cells were cultured on P(VDF-TrFE)/BT and expanded polytetrafluoroethylene (e-PTFE--control) membranes in 24-well plates. Cell adhesion and spreading were evaluated at 30 min, and 4 and 24 h. For proliferation assay, cells were cultured for 1, 7, and 10 days. Cell viability was detected by trypan blue at 7 and 10 days. Total protein content and alkaline phosphatase (ALP) activity were measured at 7, 14, and 21 days. Cultures were stained with Alizarin red at 21 days, for detection of mineralized matrix. Data were compared by ANOVA and Student t test. Cell attachment (p = 0.001), cell number (p = 0.001), and ALP activity (p = 0.0001) were greater on P(VDF-TrFE)/BT. Additionally, doubling time was greater on P(VDF-TrFE)/BT (p = 0.03), indicating a decreased proliferation rate. Bone-like nodule formation took place only on P(VDF-TrFE)/BT. The present results showed that both membranes are biocompatible. However, P(VDF-TrFE)/BT presented a better in vitro biocompatibility and allowed bone-like nodule formation. Therefore, P(VDF-TrFE)/BT could be an alternative membrane to be used in guided tissue regeneration.


Assuntos
Compostos de Bário/química , Materiais Biocompatíveis/química , Polivinil/química , Titânio/química , Fosfatase Alcalina/metabolismo , Antraquinonas/farmacologia , Osso e Ossos/metabolismo , Adesão Celular , Proliferação de Células , Sobrevivência Celular , Corantes Fluorescentes/farmacologia , Humanos , Osteoblastos/metabolismo , Regeneração , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...